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Abstract I present an evolutionary theory which is against usual Darwinian argument. S0
far, study of evolutionary game has been associated with the theory of “evolutionary stable
strategy” (ESS). This theory is based on the consensus that natural selection happens on
the scale of single individuals (genes): if a strategy increases the “Darwinian fitness” (the
expected number of surviving offsprings in the next generation) of an individual, then it
become the winner in the struggle with other strategies. The ESS theory thus determines
which strategy becomes the winner in the contest with other strategies. However, the
winner may go extinct during a long period, if its population size in stationary state is less
than the minimum viable population, in other words, if the winner is endangered. The ESS
theory disregards whether the winner is vulnerable or not. In the present paper, such long-
term maintenace is explored by population vulnerable analysis (PVA). T apply both ESS
analysis and PVA to a lattice ecosystem. Computer simulation on square lattice reveals
that depending on the minimum viable population, PVA is more relevant than the ESS
analysis. An established strategy is roughly determined by “evolutionary maintainable
strategy” (EMS) which has the maximum value of steady-state density. We assume that a
target species lives in several habitats which are geographically isolated from each other.
According to the ESS analysis, EMS may be beaten by ESS in a certain habitat, whereas
the former can survive in other habitats. This means that natural selection eventually
acts not on individuals but on groups. In this case, the population size in stationary state
becomes more important than the Darwinian fitness. Moreover, it is found from various
simulations that EMS usually locates at a finite value of death rate, which indicates a
positive meaning of death process.

1. Introduction

There has been a fundamental dispute for natural selection; that is, whether the selec-
tion happens on the scale of single individuals or on the scale of groups? Since the works
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of Hamilton (1964) and Maynard Smith (1982) et al., many biologists have formed the
consensus that natural selection acts on individuals (genes). However, the present paper
revives the concept of group selection (Wynne-Edwards, 1962). T introduce evolutionary
maintainable strategy (EMS) to explain the origin of aging.

2. Model

Consider, for example, the following lattice model:

H+C — 2GC, ' {1la)
P+ H — 2H, (1b)
C+P— 2P, (ic)

H-%p, (1d)

where H, C and P represent an individual of herbivore, carnivore and plant, respectively.
This system has been first reported as a voter model (Tainaka, 1993), but now I regard
it as an ecosystem. The reaction (1d) means the death process of herbivore, so that the
parameter d has the meaning of death rate of herbivore; with increasing d, the herbivore
suffers logs, while plant gains a nutritional advantage. Provided that the reaction (1d) is
neglected {d = 0), then the rule (1) is identical with the “Paper, Scissors, Stone” game
(PSSG) (Tainaka, 1988; 1989; Rachebourg, et al, 1996) which symbolically represents
ecological balance. We ask a question: which value (strategy) of d in the system (1) is
established in the herbivore?

3. Evolutionary Stable Sirategy {ESS)

First, usual game theory (ESS) (Maynard Smith & Price,1973; Maynard Smith,1982)
is applied. This theory is based on the consensus that natural selection happens on the scale
of single individuals (genes); if a strategy increases the Darwinian fitness of an individual,
then it becomes the winner in the contest (struggle) with other strategies. To know ESS,
we consider the following contest between a wild type of herbivore Hw and its mutant Hy:

Hw +C ~ 2C, Hy +C—2C, (22)
P+ Hw — 2Hy, P +Hy — 2Hy, (2b)
C+P — 2P, {2¢)

Hy $% P, Hy 24P, (2d)

where the herbivore H in (1) is replaced by Hw and Hys which are distinguishable by the
death rate d in the reaction (2d): d = dw (or d = dy) for Hy (or Hyr). There is no direct
interaction between these herbivores, so that they have the same niche.

Simulation is carried out by the lattice Lotka-Volterra model (LLVM) (Tainaka, 1988;
1989: Matsuda, et al., 1992). We briefly describe this simulation method. Initially, each
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lattice site is occupied by one individual of three species. Ecosystem is updated by follow-
ing two steps: (i) Choose a pair of neighboring lattice points randomly, and react them
according to (2a) - {2¢). (i) Choose one lattice point randomly, and change it by (2d);
when the point occupied by Hw (Hy) is selected, it becomes P by the probability dw
{dm). If the restriction “neighboring”in the step (i) is neglected, then the dynamics is
represented by the mean-field theory which is equivalent to the Lotka-Volterra model.
Simulation result of the contest {2) reveals that both herbivores Hy and Hy cannot
coexist; the strategy which has larger value of d goes extinct. After this extinction, the
ccosystem becomes equivalent to the system (1), and it evolves into a stationary state.
From this survival contest, we conclude that the herbivore of d — 0 is ESS. Hence, it is
very hard from the ESS theory to explain the fact that the death rate of a species is finite.

4. Population Vulnerable Analysis

second, the long-term persistence of the winner (herbivore) in the contest (2) is ex-
plored by population vulnerable analysis (PVA) (Soule, 1987} in the following simple pro-
cedure: 1) We obtain the population size of the winner in stationary state against its death
rate d. i) If this size is less than the minimum viable population (MVP) {Thomas,1990;
Wilcove,1993; Tainaka, K. & Itoh, 1996), the extinction of the winner is assumed $o ocenr.
Unfortunately the size of MVP for any single species can be difficult to ascertain. Here,
we regard it as a parameter.

4.1 STEADY-STATE DENSITIES
In Figs. 1 and 2, the steady-state densities of species in the system (2) [system (1)] are
depicted against the death rate d of herbivore H, where Figs. 1 and 2 are the results of
mean-field theory (MFT) and lattice model (LLVM), respectively. If d = 0 (PSSG), three
species have equal densities. With increasing d, a counterintuitive response is observed: the
population size of H increases in spite of increase of d. On the other hand, the population
size of carnivore {C) decreases. These results are obtaind for both MFT and LLVM.
However, in LLVM, the population of P decreases in spite of the increase of d. The
carnivore disappears, when d > d,., where d. = 1 for MFT, and d, ~ 0.4 for LLVM. After
the extinction of carnivore (d > d.), the system becomes equivalent to the contact process
(Liggett, 1985), so that the herbivore conversely decreases with the increase of d. If d > dp,,
the herbivore also poes extinct.

Note that the carnivore goes extinet by the increase of d. No one may believe such
a cause, since the population of herbivore increases (uncertainty of extinction: Tainaka,
1994). Moreover, Fig. 2 exhibits “masked” competition: the adaptive move of herbivore (d
approaches d.) brings about the worst condition of both carnivore and plant. The masked
competition, defined by steady-state densities, becomes clear in the case of lattice model,

4.2 EVOLUTIONARY MAINTAINABLE STRATEGY (EMS)
The steady-state density of herbivore (Figs. 1 and 2) has a peak at the extinction (phase
transition) point of carnivore (d = d,). We call such optimum strategy EMS. Now we
describe the evolutionary meaning of EMS. We assume that the herbivore lives in several
habitats which are geographically isolated from each other. According to the ESS analysis,
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Fig. 1. The result of mean-field theory (MFT). The long-term average of densities for
the system (2) [system (1)] are shown against the death rate d of surviving herbivore. The
density of herbivore has a peak at the extinction point of carnibore (d = dc = 1). The
plant monotonically increases with d.
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Fig. 2. Same as Fig. 1, but for the lattice model (LLVM). Each plot is obtained from the
period 200 < ¢ < 1000 with 100 x 100 lattice. The density of herbivore has a sharp peak
at the extinction point of carnibore (d = d..). The optimum state for herbivore (d = d.)
corresponds to the worst condition for plant and carnivore (the masked competition}.
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the strategy of the least value of d becomes the winner in each habitat. However, the
winner may go extinct during a long period, if its population size in stationary state is less
than the minimum viable population (MVP), in other words, if the winner is endangered.
When the MVP size is large, say MVP= 0.6 in Fig.2, only the strategies near the peak
(EMS) can survive. While EMS may be beaten by ESS in a certain habitat, the former
can survive in other habitats. Hence, the EMS theory explains the fact that the death
rate of a species is finite. Another positive meaning of death process is indicated by
the masked competition. Namely, it is necessary for any species to make genetic efforts
to approach EMS; otherwise, the species may be forced to be ruined by efforts of other
species [Red-Queen effect {Hamilton, 1980)).

4, 3 SELFSTRUCTURING EXTINCTION PATTER!

The difference between MFT and LLVM comes from the effect of spatial structure. Sim-
ulation of LLVM reveals that the spatial pattern is self-organized into a quasi-stationary
state: the configuration of pattern dynamically varies, whereas average quantities, such as
densities, are unchanged with time. To know a spatial correlation, we obtain the degree
of clumping R, of species i (Tainaka, 1994). When R, > 1, the distribution of species i
is clumped. In Fig. 3, the simulation result of R; for species 1 (i =H, C, P) is depicted
against d. This figure clearly reveals that when d approaches d. (d), the degree of clump-
ing of carnivore (herbivore) becomes rapidly high. We called such a cluster formation the
“selistructuring extinction pattern”(Kobayashi & Tainaka, 1997): when a species faces
extinction, its contagiousness rapidly increases. The clumping behavior of carnivore may
explain why the steady-state density of plant is decreased in spite of increase of d, and
why the peak of EMS becomes sharp.
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Fig. 3. The clumping degree R; for species 4 (i =H, C, P) is plotted against d.
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3. Concluding Remarks

I present an evolutionary theory which is against usual Darwinian argument. The
present theory contains two processes of extinction: 1) the extinction of wild type or
mutants after the contest in each habitat, and 2) the local extinction of endangered species.
The characteristic time scale of process 1) is surely smaller than that of process 2). For
the process 1), I apply usual ESS theory which is based on the consensus that natural
selection happens on the scale of single individuals (genes); if a strategy increases the
“Darwinian fitness”(the expected number of surviving offsprings in the next generation)
of an individual, then it become the winner in the struggle with other strategies. On the
other hand, T first deal with the process 2). I apply PVA 10 this process. When the size
of MVP is considerably large, the process 2) is more relevant. In this case, the selection
(the effect of MVP) acts on the scale of groups; the population size in stationary state
becomes more important than the Darwinian fitness. Note that the geographical isolation
of habitats plays an essential role for the establishment of EMS.

The system (1) is so simple, that it is expected that the similar peak as shown in Fig.
1 can be observed in many web models. I we take into account the spatial structure, we
may ecasily obtain the peak, because in lattice models, the steady-state density frequently
shows a counterintuitive nature (Tainaka,1994; Sato, et al., 1994). While ESS is usually
determined by intraspecies interaction, EMS strongly depends on the interspecific balance
in ecogystems.
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